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ABSTRACTI

* During the first year of research under the above contract the

problem of the stability of crystal structures for the heavy rare gas

atoms has been analyzed. It is known from good experimental evidence

that neon, argon, krypton and xenon crystallize in the face-centered

cubic structure (fcc), whereas helium under pressure crystallizes in

the hexagonal close-packed form (hcp). According to calculations based

on twobody forces, however, the hexagonal lattice should be somewhat

more stable for all solids involved.

I The underlying hypothesis for the analysis has been that the cubic

structure becomes more stable if deviations from the assumption of

twobody forces are taken into account. Since, in principle, there occur

many possible types of such manybody interactions, a systematic analy-

sis of these various effects was first undertaken, based on a cluster ex-

pansion and making use of a perturbation treatment.

I Simultaneously, a number of pilot calculations was carried out,

with the aim of acquiring better insight in the different characteristics

of the various possible manybody effects. From the analysis of spectra

from trapped free radicals in molecular crystals it had been found that

an argon matrix behaves to some extent like a nitrogen matrix. To pro-

vide a basis for the explanation of this curious phenomenon, it was shown

that the crystal field in solid argon is not simply the sum of fields from

separate atoms, but that deviations occur in the form of higher multipole

moments induced by electron exchange between neighboring atoms. Such

exchange effects imply, for example, that there is a quadrupole contribu-

I tion arising from an argon-diatomic "molecule", to the crystal field. It

was found that such a quadrupole moment is not small compared to that

of a nitrogen molecule and that it may, at least in part, account for the

splitting of spectral lines emitted by excited free radicals (nitrogen atoms)

in an argon matrix.

I
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Also, preliminary calculations were performed with various forms

for the threebody force (different angular and radial functions). The dif-

ferences between crystal sums for the hcp- and fcc-lattices increase in

general as the forces become of shorter range, and increase as well

with higher angular dependence (increasing powers of cos 0, where 0 is the angle

between the lines connecting any two pairs of atoms on a triangle). The

1relative difference between the crystal sums may be of either sign and

is, for reasonable analytic threebody potentials, of the order of magni-

1tude of ten to twenty percent.

I After this stage of the research had been completed, the general

treatment of threebody forces between rare gas atoms in first order of

1 perturbation theory was initiated. To avoid difficulties associated with

the use of a multipole expansion for the electrostatic interactions between

the atoms (such series diverge generally for all interatomic distances),

the integrals were evaluated exactly on the basis of a model calculation,

in which the electron charge distribution of the atoms is approximated

by a Gaussian function with an adjustable parameter. Values for this pa-

rameter can be determined empirically, both at large and at small dis-

tances betweer the atoms.

The analysis was restricted to triangles formed by a central atom

and its twelve nearest neighbors in either lattice (fcc and hcp). It was

found that the relative deviation from the additive first-order energy is

negative for an equilateral triangle, amounting to about twenty percent.

For a 120°-configuration this relative difference is much smaller and

always positive, whereas for a linear symmetric array the effect is again

large, positive, and decreasing practically linearly with interatomic dis-

tance.

A comparison, finally, between the 66 triangles, formed by a central

atom and its twelve nearest neighbors in the hcp- and fcc-structures (57

jare the same between the lattices, whereas 9 are different) revealed that,

although this threebody effect contributes significantly to the first-order

I
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energy of the crystals, the difference between the two structures is still

too small to account for the observed stability of the face-centered cubic

structure.

Therefore, a second-order calculation was started on the same basis,

leading to manybody contributions to the van der Waals-forces. This analy-

I sis is at present under way.

I
i OUTLINE OF RESEARCH PROJECT

Concerning properties of materials in general, it is nowadays re-

cognized that no essential progress is possible without extensive funda-

mental research. In the past, most of the theoretical investigations in

the field of properties of solid materials have been directed towards an

explanation of phenomena associated with metallic substances, of semi-

conductors, and, to a lesser extent, of ionic crystals. Compared with

1this group of materials, the theory of molecular solids (insulators) has

received but little attention, and even the most striking facts exhibited

by such materials often lack a satisfactory explanation. It has become

more and more urgent to try to fill this gap, since molecular solids have

become of increasing importance also from a practical point of view. As

an example it might be mentioned that the stability of the close-packed

I cubic crystal structure of the heavy rare gases (neon, argon, krypton

and xenon) cannot be explained on the basis of existing theories. One finds

Ithat the hexagonal close-packed crystal form (the helium structure) should

be more stable than the cubic structure, and this result is remarkably

I insensitive with respect to the precise form of intermolecular potentials.

Concerning this problem the present investigator has suggested that an

explanation may be found on the basis of the effect of manybody forces of

the van der Waals-type (second order of perturbation theory) on the stabi-

I
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lity. Preliminary calculations have shown that this explanation may be

the correct one, and that present theories of molecular solids need con-

siderable modification.

The crystals of nitrogen and carbon monoxide are also cubic

close-packed at the lowest temperatures, but show a transition to the

hexagonal closest packing at 350 K and 610 K, respectively. The pre-

sent investigator has suggested that the stability of these crystals and

the transition mechanism may involve orientational interactions (e. g.

those due to permanent electric quadrupole moments) in the solids.

The cubic structure is favored by quadrupole interactions in the solids,

whereas the hexagonal structure is preferred by anisotropic components

of the van der Waals forces. As the temperature increases and herewith

the rotational amplitudes of the molecular axes, the quadrupole forces,

being of first order, die out much more quickly that the (second-order)

van der Waals forces. The results obtained so far suggest strongly that

this explanation may be the correct one, although a quantitative theory

is still lacking.

Molecular solids have recently become of importance also as ma-

terials in which free radicals can be trapped and stored. The results ob-

tained in this field provide an invaluable experimental background for

the development of a crystal field theory of molecular solids. This in-

vestigator has been associated with the Free Radicals Research Group

at the National Bureau of Standards in Washington, D.C., and has per-

formed some preliminary calculations which seem to indicate that pre-

sent theories of molecular solids are in need of substantial improvement

in order to yield satisfactory agreement with experimental data.

I
I
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SUMMARY OF RESULTS OBTAINED DURING FIRST YEAR

1
The results obtained so far may be divided into four different ca-

tegories:

I. Development of a general theoretical method to classify

all possible types of manybody interactions in molecular solids. This

Janalysis is based on the method of Localized Orbitals in Crystals. It

leads to a double series expansion for arbitrary properties of molecu-

flar crystals : one, in terms of linked exchange-clusters of increasing

size, and one, in terms of increasing orders of perturbation theory.

(Special Technical and Scientific Reports No. 1 and 2, January 30 and

July 31, 1961.)

II. Evaluation of the triatomic, first-order manybody effect.

The calculation makes use of a Gaussian effective-electron model for

rare gas atoms (Special Technical and Scientific Report No. 2, July 3 1,

1961).

III. Application to the stability of crystal structures of the

heavy rare gas atoms, for a central atom and its twelve nearest neigh-

bors. The hexagonal close-packed and face-centered cubic lattices are

compared.

IV. Application to the crystal field in molecular solids, in con-

nection with a future analysis of spectra emitted by free radicals trap-

ped in solid argon. The exchange quadrupole moment for two argon a-

toms in solid argon is calculated (Special Technical and Scientific Re-

port No. 2, July 31, 1961).

1
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The analysis of threebody interactions in second order of perturba-

tion theory, again based on a Gaussian model, is at present under way.

A Special Technical and Scientific Report No 4 (August 15, 1961) was is-

sued, containing details and further technical information concerning the

I calculations for I and II.

[
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ANALYSIS OF RESEARCH PERFORMED

A. GENERAL

The following sections contain a detailed discussion of results ob-

tained on the problem of stability of crystals of the heavy rare gas atoms.

Excluded from the considerations is solid helium, since this element

crystallizes at moderate pressures in a hexagonal close-packed lattice,

which result is predicted even by a simple analysis based on pair-inter-

actions between the atoms in the crystal. This result is not changed by

any manybody effect of the type to be discussed below, since such effects

depend essentially on the amount of overlap between neighboring atoms

in the solid. Due to the small size of the helium atom, and its large zero-

point energy which results in a relatively large nearest neighbor distance,

overlap effects are entirely negligible in this case.

The analysis of manybody interactions in molecular solids will be

based on the method of Localized Orbitals in Crystals (also called the

Crystal Valence Bond method, the crystal analogon of the Heitler-London

method for molecules). We could, of course, just as well have used a

Crystal Orbital method (the crystal analogon of the Molecular Orbital me-

thod for molecules, also called the LCAO-, or Bloch-scheme, or the

Tight-Binding Approximation) which gives results identical with those of

the Localized Orbitals in the case of closed shells of electrons, as with

the rare gas atoms.

Further, we are considering crystals which are held together by

relatively weak forces of the van der Waals-type. These interactions

are very much weaker than those involved in chemical binding, or in

ionic crystals, or even compared with the cohesive energies of metals.

In good approximation, the physical properties of these systems may then

be described by means of perturbation methods.

I
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It will be shown below that any property of the crystal (in particu-

lar, the static lattice energy) can be expressed in terms of a double se-

ries expansion : one, in terms of contributions due to linked exchange-

clusters of increasing size, and one, in increasing orders of perturba-

tion theory. Molecular crystals may thus be defined by the requirement

that this double series expansion converges rapidly in both respects.

I
B. SYSTEMATIC ANALYSIS OF MANYBODY INTERACTIONS

I IN MOLECULAR SOLIDS

I
An analysis is undertaken of the different possible types of simul-

1 taneous interactions between more than two atoms or molecules in so-

called molecular solids. The analysis is carried out on the basis of a

I double series expansion : 1) in terms of linked exchange-clusters of

increasing numbers of atoms; 2) as a series in increasing orders of

perturbation theory. The use of a multipole series for the electrosta-

tic interactions between different atoms is avoided by retaining this

I interaction in unexpanded form. Instead, an effective-electron model

is used with a Gaussian form for the charge distributions. The method

is illustrated by computing the exchange quadrupole moment of two

argon atoms as a function of their distance. Calculations by P. Rosen

and by Shostak for first-order interactions between three helium atoms

are extended to atoms of the heavy rare gases. It is found that the re-

lative magnitude of this manybody effect may amount to twenty percent

of the first-order interaction energy. Possible implications with res-

pect to stability of the cubic structures of heavy rare gas crystals are

I briefly discussed.

[
[
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I INTRODUCTION

1
The possible importance of simultaneous interactions between more

than two atoms, molecules or nucleons for the interpretation of proper-

ticas of compressed gases, liquids, solids and nuclear matter has from

I time to time aroused interest in the literature. In molecular physics,

this interest arose principally from a possible r8le of manybody inter-

J actions in a solution to the problem concerning the stability of the ob-

served cubic crystal structures of the heavy rare gases. Calculations

based on pair-interactions had revealed that a hexagonal structure

should be somewhat more favorable, in contradiction with experiment.

1 It seemed, therefore, that the pair-assumption (additivity) of interac-

tions between rare gas atoms could not be reconciled with their crystal

structure.

In contrast with nuclear problems we possess for molecular sys-

tems complete knowledge regarding the origin of the forces between the

particles, so that, in principle, it should be possible to assess the si-

gnificance of manybody interactions for the properties of molecular so-

lids, for example. Yet, the explicit calculations which have so far been

carried out were either based on approximations which clearly ceased

to be satisfactory at relatively small interatomic distances, or they

concerned systems of little interest.

As an example of the first category, we mention the so-called

triple-dipole effect for three rare gas atoms, evaluated by Axilrod

and Teller 1, and Axilrod 2. This calculation concerns the induced-

dipole interaction in third order of perturbation theory between three

non-overlapping distributions of charge. As such, it constitutes simply

1. B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943)

1 2. B. M. Axilrod, J. Chem. Phys. 17, 1349 (1949); 19, 719, 724 (1951)

I
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I
an extension of van der Waals-interactions, as calculated by London,

to third order. But manybody interactions occur already in lower or-

ders of perturbation theory (induced by electron exchange); in addition,

the use of a multipole expansion for the electrostatic interactions be-

comes increasingly less accurate as the distances between the atoms

decrease. In fact, such series usually do not converge at all 3, 4I 6
Tredgold and Ayres 6 have modified this calculation by using a Gaussian

distribution function for the negative charge cloud of each atom, and

treating the overlap of charge distributions of neighbouring atoms in a

classical way. This adds still another source of error, since at small

i distances the interactions are mainly of exchange type.

The same type of third-order effect was evaluated independentlyI7
by Muto using an oscillator model for the atoms, and later extended by8 9
Midzuno and Kihara . Bade computed the dipole-dipole part of the

London-van der Waals interaction energy in the general order of per-

turbation theory, without exchange, using a model which represents

each molecule as an isotropic harmonic oscillator. His results were

applied to a linear chain of atoms by Bade and Kirkwood 10

On the other hand, first-order forces (exchange, chemical or

1 valence forces) are predominant when the interatomic distances are

small. Margenau 11 had already pointed out that they are of a manybodyI
3. F.C. Brooks, Phys. Rev. 86, 92 (1952)

4. A. Dalgarno and J. T. Lewis, Proc. Roy. Soc. (London) A69, 57 (1956)

5. L. Jansen, Physica 23, 599 (1957); Phys. Rev. 110, 661 (1958)

6. R.U. Ayres and R.H. Tredgold, Phys. Rev. 100, 1257 (1955);
Bull. Ams. Phys. Soc. 1, Ser. II, 292 (1956)_

7. Y. Muto, Proc. Phys. -Math. Soc. Japan, 17 629 (1943)

8. Y. Midzuno and T. Kihara, J. Phys. Soc. Japan 11, 1045 (1956)

9. W.L. Bade, J. Chem. Phys. 27, 1280 (1957)

10. W.L. Bade and J.G. Kirkwood, J. Chem. Phys. 27, 1084 (1957)

11. H. Margenau, Rev. Mod. Phys. 11, 1 (1939).I
I
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type. Such an effect was evaluated for an equilateral triangle, and a12 13
linear symmetric array, of three helium atoms by P. Rosen , Shostak

repeated the calculations for the linear array, using molecular orbitals.

Unfortunately, helium is of no direct interest as far as its crystal struc-

I ture is concerned, since this element crystallizes in a hexagonal latti-

ce, in agreement with the result of calculations based on the assump -

I tion of pair-interactions.

It is, nonetheless, of interest to note the sign of the relative

threebody interaction energy : both in the third-order (Axilrod-Teller)

3and the first-order (Rosen-Shostak) effects this sign is minus for an

equilateral triangle, and plus for a linear array of atoms. This means

that for an equilateral triangle the attraction, respectively repulsion is

weakened compared to a simple sum over three isolated pairs, whereas

the interactions for the linear array are stronger than the pair-assump-

tion indicates.

1If exchange effects are taken into account, then manybody interac-

tions occur also in second order of perturbation theory, i. e., in the sa-

I me order as the van der Waals forces 14, 15 In this case we have to do

with a triplet of atoms, two of which overlap, whereas exchange with the

third atom is not considered. Calculations were carried out on the basis

of a Gaussian model for the electron charge distributions of the atoms,

for the dipole-dipole and dipole-quadrupole components of the interac-

tions. Again, the use of a multipole series renders the results unreliable

for small interatomic separations, so that quantitative conclusions re-

garding crystal stability cannot be drawn.

1 12. P. Rosen, J. Chem. Phys. 21, 1007 (1953)

13. A. Shostak, J. Chem. Phys. 23, 1808 (1955); see also P.O. L~wdin,
I J. Chem. Phys. 19, 1570,15791951) (ionic crystal)

14. R.T. Mc Ginnies and L. Jansen, Phys. Rev. 101, 1301 (1956)

15. L. Jansen and R.T. Mc Ginnies, Phys. Rev. 104, 961 (1956);
R. T. Mc Ginnies, Ph. D. Thesis, Univ. of Maryland (1957).

1
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For completeness, we mention manybody interactions between

atoms or molecules which are originally in excited electron states.

They are of importance at very high temperatures and have been dis-

cussed by Dahler and Hirschfelder . Such effects, together with

j additional complications arising in case the charge distributions are

not spherically symmetric 15, 16, will not be considered in this paper.

In view of the various shortcomings of the existing calculations,

I it seems useful to devise a systematic analysis of all possible types of

manybody interactions, and to carry out their evaluation in a consis-

tent manner, avoiding assumptions which invalidate their application to,

especially, the stability of rare gas crystal structures. Since the inter-

actions in molecular crystals are very weak compared to those in metals

or in ionic crystals, we will use a perturbation expansion starting from

free-atom wave functions, but avoid using a multipole series for the

I perturbation.

I

LINKED EXCHANGE-CLUSTER EXPANSION

I
Starting from ground-state free-atom wave functions (a' ( b' c'"

I where a, b, c,... denote atoms, which are antisymmetric with respect

to exchange of electrons of the same atom, we write the zeroth order

Iwave functions, except for normalization, of the assembly of atoms as

(Slater determinant)

S(°)-- (0) (')X K T'a % 'c (1)

1 16. J.S. Dahler and J.O. Hirschfelder, J. Chem. Phys. 25, 986 (1956)

I
[
[



- 13-

an antisymmetric sum of products of atomic wave functions; PX exchanges

electrons between different atoms, or it denotes a combination of inter- and

I intra-atomic exchange.

jRelative to a fixed association of electrons with the different atoms,

each P) in (1) can be written as a product of P's involving exchange-

I clusters of atoms. For example, if P. denotes exchange of electrons 1

and 2 between atoms a and b, 2 and 3 between atoms b and c, 5 and 6 bet-

ween m and n, then we call the triplet (a b c) a linked exchange-cluster;

the pair (inn) is also such a linked cluster. If we follow a perturbation

I method for the evaluation of any property of the solid, then we will in

principle obtain contributions due to such exchange-clusters in every or-

der of approximation. These contributions can be ordered according to

the largest cluster which they contain : monatomic terms (without exchange).

diatomic terms (only pair exchange), triatomic contributions involving tri-

plets of atoms but no larger clusters, etc. With increasing cluster-size we

describe the solid in terms of units of increasing numbers of atoms : single

I atoms, pairs, triplets, etc; this procedure amounts to an increasing delo-

calization of electrons in the solid.

In this way, a double series expansion is obtained : one, in terms

Iof exchange-clusters of increasing size, and one, in increasing orders

of perturbation theory. For molecular solids this procedure may be ex-

pected to yield convergent series in both directions. In fact, it is conve-

nient to define molecular solids by the requirement that both the cluster

expansion and the perturbation series converge rapidly for any property

of interest. Such a solid can be expected to show molecular characteristics

to a large extent.

The different possible types of manybody interactions can now be in-

Idicated. In the following Table I, we place to the left the exchange-clusters

of increasing size, to the right the different orders of perturbation theory.

I A straight line between left- and right-columns connects a cluster term

with the lowest order of perturbation theory in which manybody interactions

1 occur.

!
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Table I. Possible types of manybody interactions

exchange-cluster order perturbation theory

I monatomic first

di atomic second

triatomic third

I0

If we use two sets of numbers 1, 2, 3,..., to characterize a type of

1 manybody effect, of which thE. first number denotes the cluster-size, the

second the order of perturbation theory, then the Axilrod-Teller 1, 2 _

I effect is of type 1-3, the second-order (van der Waals) manybody term1 4 , 15

of type 2-2, and the Rosen-Shostak 8 ' 9 -calculation of type 3-1. The com-

l mon twobody interactions may also be indicated in this manner : 1-2, I.e.

van der Waals forces, and 2-1, 1 . e., repulsive interactions between

Iclosed shells at small interatomic distances (exchange forces).

I
A GAUSSIAN EFFECTIVE-ELECTRON MODEL

IThe task is now to evaluate these different types of manybody inter-

actions. In principle, accurate knowledge of atomic wave functions is re-

quired to obtain precise results. However, if we have in mind an appli-

cation to the stability problem for crystals of the heavy rare gases, then

the use of a more approximate model may be justified, since the effect

can depend sensitively only on some general characteristics of the wave

functions ("size" of the atom, plus eventually symmetry properties).

We will simplify the problem by means of the following assumptions:

I
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1) only single interatomic exchange of electron pairs is taken

into account. Effects due to exchange of two or more pairs

of electrons between the same two atoms are therefore not

considered;

2) contributions due to coupling of inter- and intra-atomic ex-

change are neglected;

3) the electron charge distribution of an atom has spherical

symmetry.

I The assumptions 1) and 2) must be applied with care. In many cases

the overlap integrals between the atomic orbitals of the constituents are

not small, implying that higher-order overlap and exchange effects may

not be neglected 17. In the case of rare gas crystals effects due to 1),

respectively 1) and 2), were found to be negligible, except for very
small interatomic distances, for helium and neon 14, 15. Validity of

assumption 3) is somewhat in doubt for atoms of the heavy rare gases,
18

following calculations by Linnett and Poe , but quantitative results

are not available.

On the basis of the above three assumptions, the following model

]can be constructed. We sum over single-exchange effects between all

possible pairs of electrons (parallel spins) of two, or three, atoms. The

total effect is then replaced by exchange between one "effective" electron

on each atom. The problem becomes thus formally the same as that con-

j cerning hydrogen atoms with parallel spins. The charge distribution for

the effective electron is chosen to be of Gaussian form

17. cf. P.O. L~wdin, Adv. in Phys. 5, 1 (1956), for a general discus-
I sion of thiL difficulty.

18. J.W. Linnett and A. J. Poe, Trans. Far. Soc. 47, 1033 (1951).
See also J. Cuthbert and J.W. Linnett, Trans. Far. Soc. 54,3 617 (1958).

I
I
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p (r) = P(/ )3 exp(-1 r2); ... (2)

r is the distance from the effective electron to its nucleus, 0 is a para-

meter. Values of P for atoms of the heavy rare gases are determined

I empirically, by calculating second-order dipole interactions between two

Gaussian atoms at large distances and comparing the result with an empi-

j rical potential function 15 In this way we fit the outer part of the Gaussian

distribution. For short-range interactions the inner part of the charge dis-

tribution also plays an important r~le, so that it becomes necessary to

compare such interactions between Gaussian atoms with the repulsive part

of an empirical potential function. Such a comparison will be carried out

in a following section.I

EXAMPLE : THE EXCHANGE QUADRUPOLE MOMENT

IOF A PAIR OF ARGON ATOMS

ITo illustrate the use of the Gaussian model, we calculate the elec-

tric quadrupole moment of a pair of argon atoms, a distance R apart.

The exchange-repulsion between closed shells will give rise to a small

net positive charge in the region between two argon atoms, and a negative

I charge elsewhere. This effect gives rise to exchange multipole moments

of even order, of which we determine the first one, an electric quadru-

I pole moment.

Consider two Gaussian atoms at interatomic distance R. The

charge distribution of this pair has cylindrical symmetry about an

axis z, coinciding with the direction of R. For such cylindrically

symmetric distributions of charge we can define scalar multipole

I
I
1



- 17 -

moments of arbitrary (positive) order 5; the first non-vanishing mo-

ment is in this case a quadrupole, defined by

Q= < .e iz i2 > - <,eix i2 > ;(3)

where the x-axis is perpendicular to z, but otherwise arbitrary. For

l two Gaussian atoms, a and b, we have two electrons, 1 and 2, and

the analogy with the case of two hydrogen atoms with parallel spins

makes it possible to write the zero-order wave function as

I ,(o) 2( 1 62 (l)q(b (2) - ra(2)9(b(l)l , (4)

2where p = p, the Gaussian charge density of an atom, and & isthe overlap integral, 6 = f ab dr . The direct terms in T(o) 2

1 give, of course, no contribution to Q or to any other permanent

multipole moment, so that we are left with the exchange terms (omit-
I ting normalization ) -2 a( I ) 'b )  ) b (2).

We denote the z-coordinates of the position vectors of electrons

I and 2, with respect to the center of the line connecting the two nu-

clei, by z 1 and z 2 , respectively. Then we obtain :

< Zeizi 2 > - 4ei 3 A - 4e(R/2) 2 & 2 1/2 (1-& 2 ),i

where

I
1

I
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(Z e.x. 2 > = 4 e 2 /2(1-A 2)

Ii z

withI
w t= 12 a b d (6)

The expression for the scalar quadrupole moment of the pair

(a b ) of argon atoms becomes with (3), (5) and (6),

Q =d eiz2 > - < 2 ix i >| ii

1 = 4eA('3 -I 2 )-4e 2(R/2)2 1/2 (1 2 )  (7)

1 For a Gaussian distribution i3 = i2* so that then

1322 sthtte

Q = -2e 2- (R/2)2 . (8)

I 1-A2

This quadrupole moment is the same as that caused by an effec-
A2

tive negative point-charge -(6e) = -e -- at nucleus a, the same

I charge at nucleus b, and a positive charge 2( 6 e) at the center bet-

ween the two nuclei.I
I
I
I
I
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Values of A 2/(1 -, 2 ) can be determined with the help of those of

the parameter 0 in the Gaussian distribution function, for the heavy rare

gases . For nearest neighbors in solid argon A 2/(1 - A 2) = 0.06, and

R/2 = 1.92 9. The resulting value for the scalar quadrupole moment of

a pair of nearest-neighbor argon atoms is then

Q = 2. 14 x 10- 2 6 e. s.u = 0.45 x 10- 1 6 e cm 2

i.e., a value of the same order of magnitude as for a nitrogen molecule.

This large value is not due to a large displacement of charge, but in the

first place to the large value of the distance between two argon atoms,

which enters as the square in the expression for the quadrupole moment

I (compare a nitrogen molecule : R/2 = 0.55 5).

In view of the approximations which are inherent in this type of

model, quantitative conclusions do not seem to be justified. The result

indicates, however, that effects due to diatomic exchange-clusters of

heavy rare gas atoms may be significant for the determination of some
*

solid state properties

I

THE TRIATOMIC-FIRST ORDER (3-1) MANYBODY EFFECT[
The task is now to evaluate the different possible types of many-

body interactions in first, second and third orders of perturbation theory.

The remainder of this paper is devoted to a calculation of the 3-1-effect,

This quadrupole effect may possibly be observed by means of spectra
emitted by trapped radicals in rare gas matrices, e.g. from excited
nitrogen atoms or excited alkali atoms in solid argon.

[
[
[
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involving a cluster of three atoms, in first order of perturbation theory.

It was mentioned earlier that P. Rosen and Shostak computed such inter-

actions for three helium atoms. Helium is, however, of no direct interest

as far as its crystal structure is concerned, and a direct extension of the

methods used by these authors to the heavy rare gases would be very com-

plicated, since detailed knowledge of the wave functions is required. We

will, therefore, make use of the Gaussian model , one effective electron

per atom, with a charge density given by (2), and variable 0.

Consider such a triangle (a b c) of atoms. The zero-order wave

3 function is (Slater determinant)

I - 3o) Det j(Pa(1)4b(2) c(3) (9)
3 7(-U2abc)

I
with

A 2abc= &2ab 2 ac + L2bc - 2 Aab Aac Abc, (10)

I
The perturbation Hamiltonian, HI abc " can be written as

HIabc z H'ab +H'ac + H'bc *

IFor the first-order energy we have to evaluate

El Z <HI'abc > = <H'ab > + < Ha > + <H' b c>

I
I
I
1
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After substituting the expressions for H'ab and 40) into E

the following result is obtained

1 2 2IH'b/ 2 1 -1 (L~ ac + L bc+II <H' ab > /e 2 = 1 2 ae G aa(b) +

R ab 1-Aabc

+ 2 16ab -ac 'bc G + A6ac - ab bc12 1 -ab(a) 

2abc Gac(b)

1b -Z Aabc A b

I+ L bc- '6ab 'aac G + (AA

2  Gbc(a) 2 (Aabab - Aaabb) +
1 abc 1- Aabc

+ _ ac )(Aabbc - Aa b + ( bc )(Aaab( aba ) (11)

&2( ab cb b +~~a
i l1 abc - &abc

1where the symbols G and A are abbreviations for the following integrals

I Gb() Ta (Pb d ; Gaa(b)= f ab a d'r ; etc.

fbr c r b

I (r = distance between an electron and nucleus of atom c,

i rb = distance between an electron and nucleus of atom b.

I
I
I
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(Pa(l)Tb ( 2 ) (pa( 1) Tc.(2) dr€ d'T2

Aabac = r 12

SAab (Pa a( 1) Pa ( 2 )  b ( 1) ic ( 2 )  d I dT ;I

aabc f r 121 2

I
I etc., r12 = distance between electrons l and 2.

The first-order energy between a and b, without c present, is

i<H'b (O)/e2 . 1 1 [I 2G-
ab> /e I - 2 aa(b) - 2&abG ab(a)

Rb I ab

I -(Aabab - A aabb) I , (12)

The threebody component of (H'ab > /e 2 , namely

HI (Hb > - <HI b >(oI/e2

is obtained by subtracting (12) from (11). We do not need any further

equations, since <H' ac >, for example, is obtained from (11) by re-

placing b by c.

1The integrals G and A have, for Gaussian distributions of charge,

been evaluated by Boys . For the atomic wave functions we take

1 19. S.F. Boys, Proc. Roy. Soc. A200, 542 (1950).

I
I
I



-23 -

II
(P~ = p/flP) 3/2 exp( ~r 2 /2)

It is convenient to use the following abbreviation

F(x) - f ey dy;
I 0

also, we denote by Ra(bc) the length of the line connecting the nucleus

of atom a with the center of the line Rbc , etc. The following table

contains a list of the integrals occurring in the equation for E 1 "

11
1Table 11. List of integrals for E

Integral Value for Gauss-distribution

I A2 ab exp (- 0R 2 ab/2)

I n 2 ac exp (- 22R ac/2)

I Abc exp( 2 R- 2 bc/2)

i abc =, 2ab 2 ac + L2bc - 2Zaabac Abc

I
i
I
I
I
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Gaa(b) = Gbb(a) (2 O/f-) F(O 2 R2 ab)

Gab(a) = Gab(b) (2 P/fi T ) bF( 02 R 2ab/4)I 2
Gbc(a) (2 O'Il)4 bcF(2 R a(bc))

G ac(b )  (2 p/ Ff)& acF(2 R 2b(ac))

Aabab Of "2"/1 F p2( R 2ab/2)

22

A Aaabb 0 1-2/I] Aab

I Abac P f 12/ Abc F(2 R 2a(bc)/2)

I Aabcb 0 f'2-/ 1 ac F(p2R2b(ac)/2)

A, Aaabc f-2/n abcF(O2 R bc/8)

Abbc 9 f/ 11 ab bCF( 2R2 ac/8)

I
Ir MACHINE CALCULATIONS

The computations were carried out on the digital computer Bull

Gamma AET (word-length : 12 digits; memory access : 172 microseconds;

type of storage : magnetic drum of 8192 memories). After calculating the

arguments of the F- and &-functions for various triangular configurations,

these functions were evaluated by interpolation, using "Tables of the Error

Function and its Derivative" (Nat. Bureau of Standards, Washington, 1953).

The interpolation was carried to the fifth term of a Taylor expansion; this

I
I
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appeared sufficiertfor the accuracy desired. The intermediate results

were transmitted by punchcards to the main program, i. e., the compu-

tation of <H'abc > , <H' abc > (o), their difference, and the relative

threebody component of the first-order interactions, for values of PR

I from 1. 5 to 3. 5, in intervals of 0. 1, for each triangular configuration.

I For values of PR larger than about 3 the results are somehwat

irregular, since the different terms in equations (11) and (12) are then

very small, and the sums and differences of a large number of such

terms have to be determined. The program was devised in such a way

that different triangles require only slight modifications.

1
RESULTS FOR SOME SPECIAL TRIANGLES

The threebody, first-order interaction energies were evaluated for

a number of special triangles, among others, an equilateral triangle, a

I 120°-symmetric array and a linear symmetric array. These three types

of triangles occur among those formed by a central atom and two of its

I twelve nearest neighbors in the cubic, and hexagonal, close-packed lat-

tices. The relative threebody contribution is

< H'abc> - < HI>abc> ()

<H'abc > (o) (13)

[ where

< HIabc> (o) z <HIab >(o) + <HIac>(O) + <HIbc > ( 0) , a sum of first-

I
I
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order energies over three isolated pairs of atoms. The relative three-

body component (13) is a function only of the dimensionless parameter

0 R, where R is the smallest distance between neighbors in the triangle.

Calculations were performed for the three types of triangles with OR = 1.5;

1. 6, ... ; 3. 5, in intervals of 0. 1. This range covers the OR-values for

neon, argon, krypton and xenon, which are 3.44, 2.40, 2.10 and 1.99,

respectively 15. The results are collected in the following Figure 1.

[
Fig. 1 : Relative threebody, first-order interactions for an equilateral

triangle, a 120 0-symmetric and a linear symmetric array, as a function

]of R.I
The main characteristics of the threebody interactions are:

1 1) Equilateral triangle . The relative threebody interaction is practically

independent of P R, i. e. of the size of the triangle (at constant 0 ).1 It amounts to about 20 percent and its sign is minus, meaning that the

total first-order interaction is weaker (less repulsive) than obtained

on the basis of an additive sum-over-pairs. The sign agrees with the

result obtained by P. Rosen for three helium-atoms;

1 2) 1200-symmetric array. For this configuration the relative threebody

component is only at most 5 percent of the additive first-order interac-

tions and its sign is plus, signifying slightly enhanced repulsion

compared with the sum over three isolated pairs;

I
[
!

I
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3) Linear symmetric array. The relative threebody interaction is very

j nearly decreasing linearly with increasing OR, from 20 percent at

OR= 1.5 to a few percent at OR = 3. Its sign is plus, which means

that the effect enhances the repulsion between the three atoms, com-

pared with an additive sum-over-pairs. The sign agrees with that ob-

i tained by P. Rosen and by Shostak for three helium atoms.

I
VALIDITY OF GAUSSIAN MODEL AT SMALL DISTANCES

1 At small interatomic distances the inner part of the charge distri-

bution plays an important r~le in the determination of the repulsive in-

teractions between closed shells of electrons. Since the values for the

parameter 0 in the Gaussian distribution were determined empirically

i from a comparison with lo3n - range interactions, it is of interest to

check whether or not 0 changes appreciably with decreasing distance

between the atoms. To this end we use the repulsive part of a modified

Buckingham potential,I
E(r) 1 (a (6/a) exp a (1 - R/R 0 ).I - (6/a)

with values of E, a, and R0 for neon, argon, krypton and xenon as

given by Hirschfelder, Curtiss and Bird 20 as an empirical basis, and

20. Hirschfelder, Curtiss and Bird, Molecular Theory of Gases and
Liquids (John Wiley and Sons, Inc. New York, 1954) Chap. 12.I

I
I
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compare the results with <H' ab eq. (12), taking for 0the values

for the heavy rare gases, and varying R. The results of this compari-

son are given in the following Figure 2.

[
[

Fig. Comparison between repulsive part of modified Buckingham
potential and <I ab' (o) for a Gaussian distribution, for the heavy

rare gases, as function of interatomic distance R.I

1 It is seen from Figure 2 that the Gaussian model yields excellent

values for the repulsive potential between two neon atoms, but that

with increasing atomic weight the two curves deviate more and more.

This implies that 0 for argon, krypton and xenon increases some-

Iwhat as R decreases, indicating a certain "quenching" of the three-

body-effect. It should be remembered, however, that with decreasing

R multiple-exchange effects become more and more important,

rendering the single-exchange model less and less valid. For neon,

1argon, krypton and xenon the nearest neighbor distances in the crystals

are 3.205L 3.84 , 3.94 , and 4.37 , respectively.1

CONCLUSIONS

1
1) It is possible to classify the various manybody interactions bet-
ween atoms in "molecular solids" on the basis of a double series ex-

pansion; one, in terms of linked exchange-clusters of increasing size,

I
I
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and one, in increasing orders of perturbation theory. Molecular

solids may then be defined by the requirement that both expansions

converge rapidly;

2) With the help of a Gaussian effective-electron model, the triatomic-

first-order threebody interactions given by P. Rosen and Shostak for

helium atoms, may be extended to the heavy rare gases. Both for an

equilateral triangle and a linear symmetric array the sign of the rela-

I tive threebody interaction agrees with previous results for helium;

3) For a single triangular configuration the relative threebody interac-

tion may amount to 20 percent of the additive first-order energy;

1 4) Values for the parameter P of the Gaussian distribution, obtained

from a comparison with long-range interactions, give excellent values

I for short-range forces between two neon atoms. For argon, krypton

and xenon 0 appears to increase somewhat with decreasing interatomic

I distances.

1
C. THREEBODY INTERACTIONS BETWEEN RARE GAS ATOMS

IN FIRST-ORDER PERTURBATION THEORY

ICompilation of Results

IGeneral
The method used for the evaluation of threebody interactions in

first-order of perturbation theory is that developed in section B. For

completeness, some of the general equations will be repeated from this

section.

I
!
!
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The triatomic-first-order (3-1) effect

j To evaluate the 3-1 effect fur a triangle of rare gas atoms, use

is made of a Gaussian effective-electron model. The total effect for all

I electrons of the three atoms is replaced by that due to one "effective"

electron on each atom. The charge distribution of the effective electron

is chosen to be of Gaussian form :

p (r) = (/t 1/2 ) 3 exp (- 2r2 (14)

where P is a parameter which can be determined empirically.

Consider such a triangle of three Gaussian atoms a , b and c,

1 each with one electron (spins parallel). The electrostatic interaction

between the three atoms can be written as :I
HI abc = H'ab + H'ac + Hbc , (15)

whereas the first-order energy has the formI
<HIabc> = <H'ab> + <HIac> + <H'bc > (16)

with :

I < Habc > = fff Y*H'abc dt 1, do 2 o do2 3, etc.

i The zero-order wave function To is a Slater determinant

2- Det /a(1)(Pb(2)pc(3)t , (17)

3 ! - 1-4 abcI

where pa' (Pb and qpc are (antisymmetrized) ground-state wave functions

3 for the atoms a, b andc, and

Aabc Aab + &2ac + A2bc - 2 ,ab ac~bc

I
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I with
I f"*I ab =  aP b d , the overlap integral between a and b, etc.

I If we denote by < H' abc> (0) the simple sum of first-order inter-

actions for three isolated pairs of atoms, then

1 <H'abc > - < H ab c > (o) gives the threebody component of the

I first-order energy. It is only necessary to compute < H' ab> and

<H' ab> (o), since the remaining terms are obtained by changing in-

dices. The results are :

1 >L2 + &2
<Hab> 1 -2 ac bc )

- 2 aa(b) +
e Rab 1- abc

+ 2 Aab - ac bc G + ac ab bc G +
2 Gab(a) + 2 Gac(b) +

abc 1- Aabc

+ "bc - Aab Aac 1 (A A ++ 2 Gbc(a)+ 2 abab - aabb
-Aabc abc

+ ac 2 (Aabbc - Aabcb) + 4C (Aaabc - Aabac) (18)
1-Aabc abc

where the symbols G and A are abbreviations for the integrals

G ab(c) = f a(b dr ; G aa(b) = r a i ; etc.
Ifbrcc 

r b

I r = distance between an electron and nucleus of atom c,

rb = distance between an electron and nucleus of atom b.1
1
I
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Aabac J' (2 d I d 2 ;

(&(1);pa(2) 97b(l) (pC(2)

Aaabc = 12r d 1 d T2 ; etc.

r12 = distance between electrons 1 and 2.

The first-order energy between a and b, without c present, is1
< H ab > (O)/e2 = 1a - 12 [2Gaa(b) 2 AabGab(a)- (A abab-Aaabb)

S b ab( a(19)

Since the i 's are real, we can take:

(r) = p (r) =P(/x i/)3/2 exp ( 2 r2 /2), (20)

It is also convenient to introduce the abbreviation:

F(z)f e da ; (21)

F is related to the error function erf (y) or H(y),

H(y) 2 y e"a2 da

0

as follows :

F(y2) - 2 e da = g H(y), (22)

Y o 
2 y

The following Table II contains the different types of integrals,

with their values for a Gaussian distribution function.

I
I
I
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TABLE II

List of Integrals for the 3-1 Effect

Integral Value for Gauss distribution

A2  exp(- 2 R 2ab/2)
ab

2c exp(- 2 R 2ac/2)
ac a

12 exp(- 2 R 2 bc/2)bc b

2 &2 L 2 2 2 ,6 A
ab a + c ab ac bc

Gaa(b) = Gbb(a) (2 Pff") F( eR 2 ab)

G G ppX)Fp2 R2 /4i Gab(a) ff ab(b) ( /-F(2Rab/4

Gbc(a) (2 Pi')& bcF(P R 2a(bc) )

Gac(b) (2 7,) Lac F(p 2 R2 b(ac))

22
Aabab P j/i F(p R ab/2)

Aaabb ab

Aabac 042/x & bcF( Ra(bc)/ 2 )

abcb IJ 2/x '&acF( 2 R 2b(ac)/2)

Ab IBJ " ab &acF(P2 Rbc/8)
Saabc Rb 8

Abbc J 2 ab aF(9R2 c/8

Ra(bc) distance between a and the middle of the line Rbc; etc.
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MACHINE CALCULATIONS

I
The calculations were carried out on the digital computer

jBULL GAMMA AET. The general machine features are :

I word-length . 12 digits (binary commands)

instructions per word : 3

I operation times : memory access 172 p s

type of storage : magnetic drum of 8192 memories

n input-output

punch cards equipment : speed 175 cards per minute

cards-reader equipment : speed 150 cards per minute

printer : speed 150 lines per minute.

programming : in machine language or in symbolic

I programming system (AP2).

Evaluation of eqs. (18) and (19)

The threebody first-order effect was evaluated for several diffe-

rent types of isosceles triangles (a b c).

IC

I

I
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t Ahe distances are made dimensionless through multiplication with

the Gaussian parameter . We need the following quantities

PRab = PRac

PRbc = U PRab

p a(bc) = pRab 1- -i-- =VPRab
= ab +2

IRb(ac) = I +u Rab

where u = 2 sin e/2, v = 1( 1+7222)/2

The quantity x ORab can be taken as parameter, in terms of

which :I
< H'ab >/pe 2 and <H' > (o) /Pe22 ab

are given for any particular triangle. A range of values for x was chosen

between 1. 5 and 3.5, in intervals of 0. 1.

The equations to be evaluated are polynomials consisting of expo-

nential terms and error functions :

Exponentials: (A) A2  = exp /x2 2)

(B) 2c = exp(-x2/2)Ia
(C) 2 = exp (- 12/2)

I2 2 2 2
'bc z A6ab + c -% Aab bid&bc

I

I
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Error functions : The G- and A-integrals assume the following simple

forms

(D) Gaa(b)/P = (2/ -) F(x2 ) (l/x) H(x)

(E) Gab(a)/P f (2/fT)abF(x2 /4) = (2/x) H(x/2) ab

(F) Gbc(a)/P = (2/F)bcF(v2 x2) = (1/vx) H(vx)& bc

(G) Gac(b)/ (21W-)&acF(w 2x) (1/wx) H(wx),ac

(H) Aabab /P (1/2") (2/") F(x 2 /2) = (l/x) H(x/f-2)

1 2/
(J) A aabb/= 2 ab

(K) Aabac/P = (1/f) (2A bcF(v 2 x2/2) f (1/vx) H(vx/),iAbc

(L) Aabcb/P = (1/) (2/fn ) ac F(W2x2/2) = (l/wx) H(wx/ FiIac

(M) Aaabc/P = (I/f-) (2/f Lab aacF(U2x2/8)=(2/ux)H(ux/2f"2),abac

(N) Aabbc/P f (1/f'2) (2/F5) abbcF(x2 /8)(2/x)H(x/2f 2)6ab&bc

Symbolic Programs:

It appeared essential to employ a floating point program. The

programming was carried out in small part in machine language and the

rest in symbolic language which reduced the work considerably. The

computations can be subdivided into the following independent parts :
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a) Calculation of arguments of the G- and A-integrals. This very

short program was primarily intended as a check on the sym-

bolic program AP2.

b) Calculation of the exponentials and error functions

x

H'(x) = (2/a) exp(-x 2); H(x) = (2 If) e- d .

0

First, H'(x) was computed by means of a subprogram (Bull) with an

error less than 1 in the 10th decimal place. Then, H(x) was evaluated by

i direct integration of H'(x) with the help of Simpson's method

H(xn 1 ) = H(x) + [ H'(xnI ) + 4 H'(Xn) +H(Xn+ 1 )

with an error 4 H(V)h5/90;

*2 H'(x)dx h [ H'(o) + 4H'(l) + 2H'(2) + 4H'(3) +... +

I +4H2m-1 + H'2m]

1 with an error < mH(V)h 5 /90.

This method had, however, to be abandoned, since the necessary

high precision could not be reached.

i A second program was based on interpolation between values given

in "Tables of the Error Function and its Derivative" (National Bureau of

j Standards, Washington D.C., 1953). These tables give values for H'(x)

and H(x) to 15 decimals in intervals of 10- 4 for x between 0 and 1, and

in intervals of 10 - 3 for x between l and 5.6.

It appeared more advantageous to employ a high-order interpola-

tion formula and fewer tabulated values than inversely. This avoided the

necessity of storing long lists of tables in the machine. A Taylor-expansion

3 to fifth order was used and appeared to yield satisfactory precision.

I
!
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H(x) = H(x 0 ) + ph H'(xo ) +( H'(x ) +... + (ph)5 H(V)(x ),
2! 5

with

H"(xo) = -2x oH(Xo);

0 0 0I ~ ~H"'(Xo) =(4x O2'
- 2) H'(Xo), etc.

where

I ph = x- x0 and h = x I - x 0 =x2 -x I = etc. withp<lt2.

I In this way, values for H(x) were obtained which were accurate to 9

or 10 decimal places, depending upon the range of values for x . All re-

sults were stored on punchcards for use in the main program.

1 Main Program

In the first part of the main program, four different types of isosceles

triangles were considered, characterized by:

I u = e, 0-1l0, triangle I;,

I u = f -/3, 0-. 1460 ,  triangle II;

u = 2 , e = 180 ° , triangle III;

Su =fT l, 0 a 1200, triangle TV.

Each triangle was considered in two different configurations:

i i) Rab as one of the two equal sides of the triangle;

ii) Rab as the third side of the triangle.

In case i) the results for <Hiab> /Pe 2 and < SIab> (o)/,e2 were

abbreviated as A 1 , B 10 respectively, whereas in case ii) these results

are denoted by A2 , B 2 .

[
I



-39-

I For each of the four triangles, and for each value of the parameter

I x = Rab the following quantities were calculated :

triangle I A l A B a B ; R
11 1 2 * 1 2

triangle II Ail AIl B ; R etc.,IIII 11 2 # 1 III 11 2 R11

with R 2 A nl + A n2
with Rn = 2 B +n2

The ratio Rn gives the relative threebody component

I <H'abc> - <H'abc ()

<H' abc >

for a triangle of type n.

I It was found that for values of x larger than 3 the results become

more or less irregular. This is due to the fact that then the H-functions

I are practically equal to f2-/n and the H' equal to zero; partial results

may become as small as one in the ninth or tenth decimal place. It would,

1 nonetheless, have been possible to retain high accuracy also for this range

of values for x by using a double-precision calculation (to 22 decimal pla-

I ces). This was, however, considered unwise since it would have prolon-

ged the calculation times very considerably.

I In the second part of the program, two more types of triangles

were evaluated, characterized by

u = 0 = 60 ° , triangleV

I u -2 0 * 900. triangleVI.

I
I
I
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which was possible without principal modifications of the program. The

results were plotted as function of 6, and proved to exhibit regular be-

haviour.

In Fig. 1, (section B), the relative threebody, first-order interac-
tions for an equilateral triangle, a 120°-symmetric and a linear symme-

tric array are plotted as a function of x = PR. In Table III detailed results

are given for A = <11ab > /P e 2 for the two different configurations of

each triangle I, II, I1, IV, V and VI (AV = AV ), as well as the twobody

interaction energy BV, for x between 1. 51and 3.

I Secondary Programs

I The foregoing results, transferred to punchcards, were applied to

a determination of first-order, threebody interactions between triangles

j of atoms formed by a central atom and a pair of nearest neighbors in the

face-centered cubic (fcc) and hexagonal close-packed (hcp) structures.

The total threebody interaction may be written as

N (P e2 ) (Ea)hcp  and N (Pe 2 ) (E a)fcc'

where N is the total number of atoms in the crystal, e is the electron

charge, and E is the total threebody interaction for a central atom

(a) and its twelve nearest neighbors. The expressions for Ea& are :

(Ea&)hc p = 24Av + 18 (2AIV +A ) +3(2AIII + A)+I1 AI2 1II II
+I ~ AII(2 +AIA 1 AI

+12 (2 AVI AVI 2 ) +3(2 + ) +6 (2A + A 1

the roman numerals refer to the different types of triangles. In the case

of an equilateral triangle (type V) there is, of course, no distinction to

be made between A and A or between and B
V1  V2  .1 2I

I
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(Ea&)fcc 2 2 4 AV + 18 (2 AIV 1 +A ) + 3 (2A +A ) +

+ 12 (2 AvI 1 +AvI 2 ) + 3 (2 AIII 1 +AI2) + 6 (2 AIv 1 +AIV2).

The terms have been arranged in such a way that the first four are

j the same between the hcp- and fcc-structures, whereas the last two terms

are different.

1 On the other hand, the total twobody interaction is

N(Pe 2 ) Ea-b I with Eab = 6 BV.

INo distinction has to be made between the twobody interactions in

the hcp- and fcc-lattices, since, as far as a central atom and its twelve

jnearest neighbors are concerned, these interactions are the same, at

the same value of x = O R, for the two structures.

The following quantities were calculated as functions of x :

(Eaa)hcp ; (Ea&)fcc ; (Ea&)hcp " (E a)fcC

together with ratios

(Ea A)hcp / Ea-b and (Ea&)fcc / Ea-b

the latter quantities give the relative contributions of first-order, three-

body interactions for the two lattices, as a function of x = R. Detailed

results are given in Table IV.

A final subprogram was used to check the validity of the Gaussian

model at small interatomic distances. To this end, -the repulsive part of

the modified Buckingham-potential,
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C: 6 ea(1-R/R o  o

1 - (6/a) a

with E , a and R given parameters for neon, argon, krypton and xenon,

was compared with the first-order interaction between two Gaussian atoms,

(pe ) BV0 as a function of pR, R being the distance between the two atoms.

Fig. 2 gives the results of this comparison (section B).

I
I
I
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IMPLICATIONS OF RESULTS FOR POSSIBLE FUTURE WORK

I
The evaluation of threebody interactions in first-order of pertur-

bation theory being terminated, the next step consists in calculating

the threebody-second-order (2-2) effect. This term is on one side mo-

re complicated in that second-order perturbation theory is used, but

simpler in that we consider here the interaction between a diatomic

unit and a single atom. Electron exchange between the atom and the

pair is consistently neglected; taking it into account implies a higher-

order correction in the present scheme.

The perturbation hamiltonian H'abc takes a particularly simple

form in this case. Namely, the second-order interaction between the

two atoms which form the diatomic unit (ab) is not changed by the pre-

sence of the third atom (c), since (c) does not overlap with (ab). Con-

sequently, for the evaluation of the threebody component, we may res-

trict ourselves to the part HO(ab) c of H'abc ' giving only the electro-

static interaction between the pr (ab) and the third atom (c). As a re-

sult, the interaction between atoms a and b does not occur, which

simplifies the calculations considerably.

Further, the summation over all excited states of the three atoms

will be carried out by replacing the resonance denominators by an ave-

rage excitation energy, which leaves only matrix elements of H'(ab)c

and (H'(ab)c) 2 for the unperturbed ground state. The value of this average

excitation energy does not matter, since. it drops out in a calculation of

the relative deviation from the assumption of twobody interactions. The

total number of resulting integrals is 64, mostly of three-center type

with Gaussian integrands, except for factors I/r or (1 /r i)(I/rkl),

where i., j k 1 denote any one of the three electrons or the three

nuclei, with i 7 j, k t 1. These integrals are in part direct, in part

of exchange type; the exchange involves electrons of the pair (ab), but

1
I
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not of atom c. Further stages of the research project, such as the

calculation of elastic constants (deviations from the Cauchy-relations)

will then be devised along similar lines, pending the outcome of the

present computation.

PUBLICATIONS AND CONFERENCES

Three Special Technical and Scientific Reports were issued during

the first year of the Contract. A manuscript entitled "Systematic Ana-

I lysis of Manybody Interactions in Molecular Crystals" was submitted for

publication in The Physical Review (August 1961).

Colloquium talks on this research were delivered by the principal

investigator at Ohio State University, Columbus, Ohio (November, 1960),

at the Max-Planck Institut ftlr Physik und Astrophysik, Munich (June,

196 1) and at the National Bureau of Standards, Washington D. C. (Octo-

ber, 1961). In addition, the research was diucussed at several colloquia

of the Battelle-Geneva Institute.

PERSONNEL ON THE CONTRACT

The following persons were employed part-time under the contract

during the past year :

I1) Dr Laurens Jansen, principal investigator;

2) Dr Barbara Kohin, visiting scientist, the Catholic University
of America, Washington D.C., as off May 1961;

!
I
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1 3) Mr Francois Siegrist, mathematics student, Federal Institute
of Technology, Zurich, Switzerland, during August 1961;

14) Mr Maurice Marchais, Mr. Raymond Lenoir, Mrs Jolan
Targonski, scientific personnel associated with the digital
computer Bull Gamma AET.

No changes in research policies by the Contractor have occurred

during the period October 1, 1960 - September 30, 1961.

I

I SUMMARY OF NUMBER OF MANHOURS ON CONTRACT

I
The total numbers of manhours expended on the contract for the

individuals mentioned in the previous section are :

- Dr Laurens Jansen : 1 000 hrs

- Dr Barbara Kohin : 100 hrs

- Mr. Francois Siegrist : 150 hrs

- Mr. Raymond Lenoir : 125 hrs

- Mr. Maurice Marchals : 250 hrs

- Mrs Jolan Targonski : 300 hrs

INot listed are hours expended for secretarial services, preparation

and processing of Technical Reports and similar items.I
No important property was acquired during the contract period at

i direct contract expense.

Geneva, November 15, 1961
LJ/gbs - Z-9219

I
i
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